top of page

Decoupling charge and heat transport

In metals, electrons carry both charge and heat. As a consequence, electrical conductivity and the electronic contribution to the thermal conductivity are typically proportional to each other. Lee et al. found a large violation of this so-called Wiedemann-Franz law near the insulator-metal transition in vanadium dioxide nanobeams. In the metallic phase, the electronic contribution to thermal conductivity was much smaller than what would be expected from the Wiedemann-Franz law. The results can be explained in terms of independent propagation of charge and heat in a strongly correlated system.

In electrically conductive solids, the Wiedemann-Franz law requires the electronic contribution to thermal conductivity to be proportional to electrical conductivity. Violations of the Wiedemann-Franz law are typically an indication of unconventional quasiparticle dynamics, such as inelastic scattering, or hydrodynamic collective motion of charge carriers, typically pronounced only at cryogenic temperatures. We report an order-of-magnitude breakdown of the Wiedemann-Franz law at high temperatures ranging from 240 to 340 kelvin in metallic vanadium dioxide in the vicinity of its metal-insulator transition. Different from previously established mechanisms, the unusually low electronic thermal conductivity is a signature of the absence of quasiparticles in a strongly correlated electron fluid where heat and charge diffuse independently.

The interface thermal conductance (G) at the MoS2/h-BN interface is measured by Raman spectroscopy, and the room-temperature value is (17.0±0.4) MW.m-2K-1. For comparison, G between graphene and h-BN is also measured, with a value of (52.2±2.1) MW.m-2K-1. Non-equilibrium Green’s function (NEGF) calculations, from which the phonon transmission spectrum can be obtained, show that the lower G at the MoS2/h-BN interface is due to the weaker cross-plane transmission of phonon modes compared to graphene/h-BN. This study demonstrates that the MoS2/h-BN interface limits cross-plane heat dissipation, and thereby could impact the design and applications of 2D devices while considering critical thermal management.

The quest for high-efficiency heat-to-electricity conversion has been one of the major driving forces towards renewable energy production for the future. Efficient thermoelectric devices require high voltage generation from a temperature gradient and a large electrical conductivity, while maintaining a low thermal conductivity. For a given thermal conductivity and temperature, the thermoelectric powerfactor is determined by the electronic structure of the material. Low dimensionality (1D and 2D) opens new routes to high powerfactor due to the unique density of states (DOS) of confined electrons and holes. 2D transition metal dichalcogenide (TMDC) semiconductors represent a new class of thermoelectric materials not only due to such confinement effects, but especially due to their large effective masses and valley degeneracies. Here we report a powerfactor of MoS2 as large as 8.5 mWm−1K−2 at room temperature, which is amongst the highest measured in traditional, gapped thermoelectric materials. To obtain these high powerfactors, we perform thermoelectric measurements on few-layer MoS2 in the metallic regime, which allows us to access the 2D DOS near the conduction band edge and exploit the effect of 2D confinement on electron scattering rates, which result in a large Seebeck coefficient. The demonstrated high, electronically modulated powerfactor in 2D TMDCs holds promise for efficient thermoelectric energy conversion.

© 2024 by Kedar Hippalgaonkar. Created with Wix.com

​

Materials Science and Engineering, Nanyang Technological University

Institute of Materials Research and Engineering, Singapore

bottom of page